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An old familiar problem

X1, . . . ,Xn
iid∼ N (µ, σ2), µ, σ2 unknown. Define

S2 =
n∑

i=1

(Xi − X̄ )2,

and

σ̂2n(c) =
S2

n − 1 + c
,

for −(n − 1) < c <∞.

The minimum variance unbiased estimator σ2n(0) appears to be the
most popular and widely used estimator.

This is true despite the fact (well-known) that the maximum
likelihood estimator, σ̂2n(1) = S2/n, has smaller mean square error for
all σ2.
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An old familiar problem (continued)

The estimator in the class σ̂2n(c) with smallest mean square error is
σ̂2n(2) = S2/(n + 1). The mle is sometimes used, but not apparently
σ̂2n(2). These are very well known results and are found in numerous
textbooks in statistics.

The preference for σ̂2n(0) would seem to suggest that unbiasedness is
a highly valued attribute. Nevertheless, σ̂n(0), known as the sample
standard deviation, is the estimator of choice for σ, but is biased.

It is a routine exercise to find a constant multiple of σ̂n(0) which is
unbiased, but there do not appear to be advocates for this approach.
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An old familiar problem (continued)

This seems to me to be a basic logical problem. Why is unbiasedness of
importance for estimating σ2, but not for σ? When I ask people, I get
answer like:

1 Who cares? For n moderately large the difference between the
estimators are negligible.

2 Data is not really exactly normal anyway. All of these estimators are
similar and their differences are minuscule compared to the problem
of departures from normality. We should instead use robust
estimators of scale.

3 One should use a Bayesian approach to choose the appropriate
multiple of σ2.
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Choice of Loss Function

The use of mean square error is widely acknowledged, (going back to
Gauss), to be primarily motivated by mathematical convenience. In
this example, we should ask, “what is the purpose of estimating σ2?”.

One answer is that from the data we will estimate various
probabilities of events under N (µ, σ2) by the corresponding
probabilities under N (X̄ , σ̂2), where σ̂2 is the estimated variance, and
X̄ the sample mean.

One measure of this loss would be:

`(σ̂2, σ2) = sup
B

∣∣P (N (µ, σ̂2) ∈ B
)
− P

(
N (µ, σ2) ∈ B

)∣∣ .
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Choice of Loss Function (continued)

This loss is independent of µ and satisfies:

`(σ̂2, σ2) = g

(
σ̂2

σ2

)
, (1)

where

g(r) = g

(
1

r

)
for 0 < r <∞; (2)

g is strictly increasing on [1,∞). (3)

The g function corresponding to total variation distance is given by,

gv (r) = 2

∣∣∣∣∣Φ
((

r log r

r − 1

)1/2
)
− Φ

((
log r

r − 1

)1/2
)∣∣∣∣∣ ,

where Φ is the standard normal cdf.
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Log Symmetric Loss

A loss function with properties (1)–(3) will be called a log symmetric
loss function. This class coincides with the class of loss functions
which are increasing functions of total variation distance,

d(σ21, σ
2
2) = y

(
gv

(
σ21
σ22

))
,

where y is strictly increasing on [0, 1).

Other examples of such loss functions are g1(r) = |log(r)| and

g2(r) =

[
1−

(
2r1/2

1+r

)1/2]1/2
. g1 is known as arc length distance and

g2 is Hellinger distance.
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Log Symmetric Loss (continued)

Consider the class {σ̂2(c),−(n− 1) < c <∞} defined above. Denote
by L(c) a random variable whose distribution is that of the loss
incurred by the use of σ̂2(c) under a fixed but arbitrary log symmetric
loss function. Then,

P(L(c) ≤ x)

is non-increasing in c ≥ 0 for all x , and strictly decreasing in c ≥ 0
for any x ∈ (g(1+), g(∞)).

The stochastic dominance property is considerably stronger than
EL(c) increasing in c ≥ 0, when this expectation exists.
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Log Symmetric Loss (continued)

We conclude that under log symmetric loss, for 0 ≤ c1 < c2, that
σ̂2(c1) is a better estimator than σ̂2(c2). Thus the minimum variance
unbiased estimator, σ̂2(0), is better than the mle, σ2(1), which in turn
is better than the minimum mean square error estimator in this class,
σ̂2(2). The conclusion provides support for conventional wisdom.

The above stochastic monotonicity does not extend to c ≤ 0. Under
a log symmetric function, no σ̂2(c) with −(n − 1) < c ≤ 0, will
stochastically dominate another member of this subclass. Within this
subclass we need to discriminate among estimators by the weaker
criteria of expected loss.
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Log Symmetric Loss (continued)

An asymptotic analysis suggests that c = −2/3 gives minimal
asymptotic risk for a wide class of log symmetric loss functions. Thus,

σ̂2
(
−2

3

)
=

S2

n − 5
3

,

would be the estimate of choice under this criteria.

Comparing σ̂2(0) to σ̂2(−2/3), under the total variation distance,

EL(0)− EL
(
−2

3

)
=

1

9π

√
2

e
(n − 1)−3/2 + o

(
n−2
)

∼ .03034(n − 1)−3/2.
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Linear Models

Consider X n×1 ∼ N (µ, σ2Σ), with Σ a known positive definite
symmetric matrix, σ2 unknown, and µ known to lie in M, a
p-dimensional subspace of Rn.

Here the analog of σ̂2(c) is S2/(n − p + c), where
S2 = ||X − PMX ||2, and PMX is the projection of X on M under
the inner product (x , y) = x>Σ−1y .

Once again L(c) is stochastically increasing in c ≥ 0, and the
minimum variance unbiased estimator, σ2(0), stochastically
dominates the mle, σ2(p).
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Thank you!
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