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1.Introduction

• Correspondence Analysis of contingency tables 
(CA)  is both:

– a double PCA

– a generalized SVD

with weights and the chi squared metric

• Doubly sparse CA: an application of sparse SVD

• Sparse PCA of row profiles only leads to column
sparse CA. Useful for contingency tables with
many columns like documents-terms matrix

40 years GSI, March 2021 7



2.Reminders on sparse PCA

• In PCA, each PC is a linear combination of all the 
original variables : difficult to interpret the results 
for large p.

• Objective of sPCA: obtain pseudo components 
easily interpretable as combinations of only a few 
variables. Most coefficients (weights) should be
equal to zero.
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2.1 First attempts:

• Simple PCA

– Hausman (1982) weights -1,0,1

– Vines (2000) : integer weights  

– Generalized by Rousson, V. and Gasser, T. (2004) : 
blocks of weights (+ , 0, -)

Hausman, Robert E., Jr. (1982) Constrained multivariate analysis. In  S.H. Zanakis,  Jagdish S. Rustagi eds, 
Optimization in statistics: With a view towards applications in management science and operations research,  
TIMS Stud. Management Sci., 19, 137–151, North-Holland, Amsterdam, 1982

Vines, S.K., (2000)  Simple principal components, Journal of the Royal Statistical Society: Series C (Applied 
Statistics), 49, 441-451

Rousson, V. , Gasser, T. (2004), Simple component analysis. Journal of the Royal Statistical Society: Series C 
(Applied Statistics), 53,539-555 
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2.2 SCoTLASS (Simplified Component Technique –
Lasso) by Jolliffe & al. (2003) : extra L1 constraints
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Shen & Li, 2015
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2.3 More than 20 variants



2.4 Sparse SVD

• A rank 1 sparse SVD or Penalized Matrix 
Decomposition (Witten et al, 2009): 

• Equivalent formulation:
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2.5 Lost properties and issues

– Sparse PCA does not provide a global selection of 
variables but a selection dimension by dimension : 
different from the regression context (Lasso, Elastic 
Net, …)

– SCoTLASS: orthogonal factors but correlated
components

– Usually: neither factors, nor components are 
orthogonal
• Necessity of adjusting the % of explained variance

– No clear criterium like R2 or MSE to choose the tuning 
parameters ie the degree of sparsity.

40 years GSI, March 2021 13



• Deflation in SVD

– Usual solution: repeat the penalized
decomposition for X-duv’ (Hotelling’s deflation) 
but the solution is not orthogonal to the rank one 
matrix uv’.

– Projected PMD provides an almost orthogonal 
solution: 

replace X by (I-uu’)X(I-vv’)
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3.Sparse Correspondence Analysis

3.1 Standard correspondence analysis

• For a contingency table N, CA is

– a double PCA

– A weighted SVD of centered P=N/n
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3.2 A toy example: colours of sound
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Abdi H., Béra M. (2017) Correspondence Analysis 
In: Alhajj R., Rokne J. (eds) Encyclopedia of Social Network Analysis and Mining,
Springer, New York, 
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CA rows and columns coordinates and contributions
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Both sides sparse CA through sparse SVD

– sumabsu = 

– sumabsv =

– The smaller they are, the sparser u or v will be. 
Need for a compromise between sparseness and 
fit 
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Criteria: 

•

Zou et al. (2007), Shen et al. (2013)

• Index of sparseness derived from Trendafilov
(2014)

40 years GSI, March 2021 20

2

2

ˆ
ln( )

( ) ( )
ˆ

np
BIC df

np np
 




 

X X

2

0

#0a sV V
IS

V pr


Va, Vs and Vo are the adjusted, 
unadjusted and ordinary total variances for the
problem, and #0 is the number of zero loadings 
with  r components



Simultaneous optimization:  first dimension
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Second dimension

• BIC fails to give an acceptable solution 
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While IS does
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Sparse CA 
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• Percentages of explained variance are a little
smaller than in the standard CA

• Graphical displays look very similar

• Low contributions have been set to zero, 
while high contributions are enlighted

– Weight vectors nearly orthogonal : 

<u1; u2 > = 0.0085 and < v1; v2 > = 0.0047

– Coordinates vectors nearly orthogonal:   

<a1; a2 >= 0.0128 and < b1; b2 > = 0.0320
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3.4 Textual data

• State of the Union Addresses

– speeches of 43* presidents of the United States 
(from G.Washington to D.Trump). The data set 
contains 934 high-frequency words that appear 
more than 220 times in the speeches. 

– Preprocessing reduces the number of words to 
572

* Some speeches are missing
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Scree plot of eigenvalues
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• One side sparse CA 

– Sparsify columns (words) not rows (presidents)

– No constraints on 

– Grid search for IS as a function of 
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Optimal values 
of sumabsv gives
too many non-zero
weights. 

Our choice: 
50 non zero weights
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Sparse CA-Oneside
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8 clusters
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4. Conclusions and perspectives

• Sparse methods meet the challenge of high 
dimensional data and makes interpretation easier. 

• Sparse correspondence analysis useful for large 
contingency tables

• Future works

– Packaging sparse CA in R 

– Sparsify non symmetric correspondence analysis
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