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BAYESIAN ROBUSTNESS - BERGER, 1985
X ~N(6,1)
Expert’s opinion on prior P: median at O, quartiles at +-1, symmetric and unimodal
= Possible priors include Cauchy C(0, 1) and Gaussian N (0,2.19)

Interest in posterior mean u©(x) or N (z)

T O 1 2 4.5 10
wC(z) 0O 0.52 1.27 4.09 9.80
uN(z) 0 0.69 1.37 3.09 6.87

Decision strongly dependent on the choice of the prior for large x
= Choice of a class I of priors

= Robustness measure: range of posterior quantity of interest



STOCHASTIC ORDERS

e Usual stochastic order
— X and Y r.vs withd.f’'s F'x and Fy s.t. Fix(t) > Fy(t), VteR
- = X <qY,ie. X issaidto be smaller thanY in the usual stochastic order

- X <gY & E[g(X)] < E[g(Y)] holds for all increasing functions g for which
the expectations exist

e Likelihood ratio order

— X and Y be (discrete) absolutely continuous r.v.’s with d.f’'s F'x and Fy and (dis-
fy ()
fx(t)

of X and Y (here a/0 is taken to be equal to co whenever a > 0)

crete) densities fx and fy s.i.

increases over the union of the supports

- = X <, Y,ie. X issaid to be smaller than'Y in the likelihood ratio order

® XgerngstY



DISTORTION FUNCTIONS
X r.v. with d.f. Fx

h distortion function
— non-decreasing continuous function h : [0, 1] — [0, 1]
— st Ah(0)=0andh(l) =1

Given h, d.f. modified by Fj,(z) = ho F (z) = h[F (x)]
= X, distorted r.v. with d.f. F},(x)

Lemma.
— 1 prior distribution (absolutely continuous or discrete) with d.f. F;
— h convex distortion function in [0, 1] = 7 <, 7,

— h concave distortion function in [0, 1] = 7 >, 7,



CONCAVE AND CONVEX DISTORTION FUNCTIONS

F()

0.0

e Solid: F.(0) = 6

: . . 1
e Dashed: F, (0) = /6 (concave distortion) = decreasing I.r. = —— = 7w >, 7,
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e Dotted: Fy, (0) = 62 (convex distortion) = increasing l.r. = 26 = = <;, m,



DISTORTED BAND OF PRIORS

Uncertainty on prior 7 through concave (h1) and convex (h2) distortion functions
= distorted distributions 7, and 7y, s.t. m,, < ™ <y R,
Definition. Distorted band Iy, p, » S.t. Th, p, e = {7 1 7, <pp " <pp p, }

m € Iy, n,» = distorted band as a particular "neighborhood” band of 7, with lower
and upper bounds given by distorted distributions
X <, Y = X <4 Y = distorted band subclass of distribution band class, i.e.

!/ . /
[ hihor C {7T D Thy, Sst T st 7Th2}>

= {n': Fy, (0) > Fr(0) > Fy, (0),Y0 € ©}

Note that likelihood ratio order does not apply, in general, when comparing two priors
7y and 75, in My, p, , Since each of them is just ordered w.r.t. 7, and mp,

We are unable to "identify” all the priors in the class



CHOICES OF DISTORTION FUNCTIONS

e hi(x) =1—-—(1—x)*and hao(z) = z%, Va>1
— Useful to represent uncertainty in the tails of the prior
- a=neN=F, (0) =1-(1—-F:(0))"and F;,_(0) = (F:(0))"

— = d.f’s of min and max of i.i.d. random sample of size n from baseline prior =

e Skewed distributions
— Absolutely continuous, symmetric around O prior with density 7w (6) and d.f. F(60)
— = skew-7 with parameter o with density 7, (0) = 27 (0) F:(a0)
— Distribution: right skewed if « > 0 and left skewed if o < O

— Easytoshow 7 <;, mo foralla > 0 and n, <;. wforalla < 0O



Accumulated probability

CHOICES OF DISTORTION FUNCTIONS
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m ~ N (0, 1) prior with standard normal d.f. &,

Distorted d.f’s Fy, (0) =1 — (1 — ®z(0))*3 and Fr, (6) = (®z(0))3



POSTERIOR BAND

Spizzichino (2001): given two priors 71 and 7o s.t. m1 <;. 72
= posteriors s.t. w1, <j T2y

Proposition. 7 prior and I, 3, » distorted band around 7 based on h1 and h>

/ /
= Thy o St Ty Sip Thy o VT € Uiy hor

Posterior of lower and upper bound distributions of the distribution band = lower
and upper bounds in the <;,. order sense for I, family of posterior distributions

= [, still distortion band of a posterior for some concave and convex functions

Closure property very uncommon among classes of priors
= dealing with priors or posteriors is the same



METRICS TO MEASURE UNCERTAINTY

Interest in probability metrics to evaluate how a prior belief differs from its distorted
version and how the corresponding posterior distributions differ

Mathematical tractability (but not only!) = Kolmogorov and Kantorovich metrics
R.v’s X and Y with d.f’s F'xy and Fy

Kolmogorov metric K(X,Y")
- K(X,Y) = SU§|FX(x) — Fy(z)| = |po — h(po)|, with po s.t. h'(po) = 1
xe

— hi(x) =1—(1—2x)and ho(x) = z% Va>1

—1
- = K(m,m,) = K(m,m,) = (j\l/@ = 0.067fora=1.2
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FAULT TREE ANALYSIS

(a) (b)

Two simple fault trees (a) using an OR operation and (b) using an AND operation

Fault Tree Analysis (FTA) used to quantify the probability of occurrence of an unde-
sirable event (Top Event, here Y)

Fault trees (FTs) constructed in a top-down fashion from Top Event to their causes,
represented by intermediate and elementary (here X1, X», X3) events in the tree

Events usually Bernoulli trials = either happen or not
Events usually statistically independent

Relationship between events and causes represented using logical gates, most com-
monly AND and OR gates
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FAULT TREE ANALYSIS

FTA often used to evaluate risk in large, safety critical systems but has limitations
due to its static structure

Bayesian approaches proposed as a superior alternative to it, however, this involves
prior elicitation, which is not straightforward

Priors typically provided by Beta distributions on occurrence probability of elemen-
tary events

Minor misspecification of priors for elementary events can result in a significant prior
misspecification for the top event

= need for a robustness approach for FTA which can quantify the effects of prior
misspecification on the posterior analysis

= first Bayesian robustness approach specifically developed for FTA

12



FAULT TREE ANALYSIS
E [X.]

(a) (b)

X; ~ Bernoulli(@i), with 6; = P(X@ = 1), 1=1,2,3,
Y ~ Bernoulli(#), with = P(Y = 1)

—=0=1-]]_,(1—6;)for[a]and & = []_, 6; for [b]

=70 =71)= / w1 (1) m2(m2)73(73) dridredrs s.i.
Q0

Q0 ={r,€[0,1],i=1,2,3:1—][_,(1 —7) = 7} for the OR operation

=>7n0=1)= / w1 (1) 72 (m2)73(73) dridmodTs S.i.
Q!

QA = {1, €[0,1],i=1,2,3: [[_, = = 7} for the AND operation

13



FAULT TREE ANALYSIS

01 ~ Beta(1,10), 0> ~ Beta(2,10) and 03 ~ Beta(3,20)

Priors for 64,05,05 Prior for © OR gate Prior for 6 AND gate
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e Left: Priors for 01 (continuous), 0> (dashed) and 03 (dot-dashed)
e Centre: Prior distribution for 0 for the fault tree [a]

e Right: Prior distribution for 6 for fault tree [b]
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FAULT TREE ANALYSIS

Distorted band class I, with same a3
— Lower bound: Fj, o, (z) =1 —[1 — F(x)]*
— Upper bound: Fj, o, () = [F(x)]“

1§a1§a2:>ralcra2
Mo - F(z)asa |1l
a1 chosen so that Kolmogorov distance does not exceed a threshold

Algorithm for generating upper (lower) density in band for Top Event: 6,’s generated
by upper (lower) density in elementary events

Examples: spacecraft re-entry example and feeding control system
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FAULT TREE ANALYSIS

Prior OR gate
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Continuous line: starting prior for probability 6 of Top Event Y
Long-dashed line: distorted band using o = 2
Dotted line: distorted band using o = 1.8

Similar results for posterior distributions
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EXTENSION TO MULTIVARIATE CASE
Prior 7(0),0 ¢ © C R"
Weight function w : R” — RT s.t. 0 < E™ [w(0)] < oo

w(6)

o [w(e)]ﬂ(e), VO € ©® CR"

Key idea: w,(0) =

For n = 1, distorted density function as weighted function:

fr(0) = W (Fr(0))7(0) = w(0)m(0)

for absolutely continuous prior (F(6) and w(0)) and differentiable distortion h
w(0) = h'(F(0)) = weight depends on F,

Absolutely continuous r.v's = weighted distributions more general than distorted
ones

Convex (concave) distortion h < weight w increasing (decreasing)

17



EXTENSION TO MULTIVARIATE CASE

x and y real numbers = x V y = max{x,y} and x A y = min{x, y}
x and y real vectors = x V y and x A y max and min componentwise
U C R™ upper (lower) setif y € U whenevery > (<)xandx € U

Increasing and decreasing used in a wide sense, i.e.,
g : R" — R increasing (decreasing) if g(x) < (>)g(y) forall x <y

X and Y n-dimensional r.v's with cdf’'s F' and G, respectively

X smaller than Y in the usual multivariate stochastic order (X <4 Y) if
P{X € U} < P{Y € U}, for all upper sets U C R"

X less likely than Y to take on large values, i.e. values in any upper set U
X <& Y = F(x) > G(x), Vx € R" (vice versa true only forn = 1)
X <st Y < E[¢(X)] < E[¢(Y)] for all increasing ¢ on R” s.t. expectations exist
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EXTENSION TO MULTIVARIATE CASE

X and Y two r.v's with pdf’s f and g, respectively

X smaller than Y in the multivariate likelihood ratio stochastic order (X <;,. Y) if
f(x)egly) <f(xAy)g(xVy),forevery xandy in R"

X<pY=>X<stY

[ : R" — RT, n > 2, multivariate totally positive of order 2 (M T P>) if
[(OI(y) S lxAy)I(xVy), vx,y € R®

n-dimensional r.v. X with pdf f said MT P, if f is MT P> or, equivalently, X <;, X
Product of MT P> functions is still MT P>

[(x) = [[i—; gi(x;), with univariate non-negative g;, i = 1,...,n, = I(X)MT P>
gi(x;)’s densities = MT P> I(x), joint density for independent r.v.s

X <y Y = order preserved for all marginal distributions
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EXTENSION TO MULTIVARIATE CASE

X and Y r.v/s with pdf’s f and g, respectively
— Ifeither X orYis MTP,then X <, Y &

- 9(x)f(y) < g9(y)f(x), vx <y, or, equivalently,
— g(x)/f(x) isincreasing in the union of their supports

X < Y = g(x)/f(x) increasing in x (vice versa true only forn = 1)
Equivalence between log-supermodular and MT P, functions
— f:R"— Rsupermodularif f(xAy)+ f(xVy) > f(x)+ f(y)

A function [ : R® — R with 2 continuous derivatives is MT P; if and only if
82
0x;0x

In(I(x)) > 0, Vi # j.

MT P> positive dependence property

— If X is MT P> then Cov(¢(X), (X)) > 0 for ¢ and v simultaneously mono-
tone increasing or decreasing
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EXTENSION TO MULTIVARIATE CASE

Multivariate prior 7= with pdf =(8), 8 € ® C R"
Weight function w : R" — R+

w(0) 77
Em[w(0)]

Weighted prior 7,,(0) = (0), V8O CR"

Consider only increasing and decreasing weight functions for two reasons
— generalization of convex and concave distortion functions in univariate case

— MT P, prior v and increasing (decreasing) weight function w = =« <;. (>,.) 7w
= weighted prior more (less) likely than prior to take on larger values

Decision maker representing changes in prior 7w by weight functions: w; decreasing
and w, increasing

= two weighted priors, 7., and m,,, s.t. wy, <;p ™ < Tw,
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EXTENSION TO MULTIVARIATE CASE
7. MT P, prior
w1 and wy: decreasing and increasing weight functions, respectively
= Cwywar = {7 1 Tw, <pp 7 < ™w, }+ Weighted band

T € [y wem = [y we,n “NEighborhood” of 7 s.t.

! . /
rwl,wg,ﬂ' C {77 LT, St T St ng}

C {n':Fr, (0)>Fn(0)>Fr (0),V0cO}.

Likelihood ratio order does not apply, in general, when comparing two priors 7} and
705 in [y, w,,» DUt each of them is just ordered w.r.t. m,,, and m,

Infinite number of priors in the class, e.g. all mixtures of two priors in the class (like
Tw,, Tw, and 7
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EXTENSION TO MULTIVARIATE CASE
7. MT P> prior
[ w,,w,,x: Weighted band associated with 7r based on w; and wo
x: observed data =- likelihood (6 | x)
7. . posterior w.r.t. prior 7’
IF (0 |x)is MTP,in @

= TTw,,x Slr 7‘-;{ Slr TTw,,x fOr a” 77/ € I_U)l,wg,Tr
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EXTENSION TO MULTIVARIATE CASE

e Examples of weight functions

- ’U)(H) = 1_7:?230)

- w(0) = [[;=; 9:(0:) and w(0) = >, g:(6:)
(g;'s non-negative increasing (decreasing) functions = w increasing (decreas-
ing))

- w(@) = [[, 0" " and w(@) = >.7_, 6% ! increasing (decreasing) when
a; >1(a; < 1),fori=1,...,n

e Examples of MT P> likelihood
— Sample from Pareto distribution

— Sample from gamma distribution
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EXTENSION TO MULTIVARIATE CASE

Failure data of door opening system of 40 underground trains

Trains delivered to an European transportation company between 11/1989 and 3/1991
and put in service between 20/3/1990 to 20/7/1992

Failure monitoring ended on 31/12/1998

Odometer reading and failure date recorded upon failure, along with code of failed
component (mechanical, electrical, etc.)
Interest in

— modelling failure history of electrical opening commands

— predicting number of failures in future time intervals

— checking reliability before warranty expiration

25



EXTENSION TO MULTIVARIATE CASE

N (t): failures in the electrical opening system in the interval (0, ]

N (t): nonhomogeneous Poisson process (NHPP) with intensity function A(¢) and
increasing and invertible mean value function

m(t) = E[N(1)] = /O Az)da,
such that m(oco) = oo

Power law process (PLP), with parameter @ = (M, 8) € RT x RT, with
— intensity function \(t|@) = M Bt°~1
— mean value function m(t|@) = Mt°

t* = (T1,...,T,) observed failure times in (0, T] s.t. T1 < ... < Ty

Likelihood function given by

1(8]t") = ﬁ AT - exp(—m(T|0)) = ﬁ MBTP ™ - exp(—MT?)

=1 1=1

26



| 22In(U(6 | 1)) _

EXTENSION TO MULTIVARIATE CASE

=—In(MT’ =10 |t )MTP,in0 =T <1
OMOp

= Normalised times, i.e. divided by total time T°
Independent exponential priors: M ~ Exzp(\) and 8 ~ Exp(u)

Independent gamma posteriors:

M|data ~ Gamma(n 4+ 1,1 4 X) and Bldata ~ Gamma(n + 1,u— > In(%))

1=1

Weighted band given by
Lower: 7., (0) o< AuM* 18" texp(=AM) exp(—puB) exp[—cM ]

Upper: m,,(0) oc AuM 18" texp(—AM) exp(—usB) (M 4 B°)

27



EXTENSION TO MULTIVARIATE CASE

o M ~ Exzp()\) and 3 ~ Exp(u)

— Data from older trains (not used later) used to get numerically My = 495.5 and
Bo = 0.79, comparing m(t|@) and cumulative number of failures

- A= 1/Mo anduz l/ﬂo

e Hellinger distance between two densities fx and fy:

HXY) = = [ (VG — VAGO)dx =1 — | /Fx(O) fr(x)dx
2 Jq Q

¢ (a=08,b=0.4,c=0.17)and (¢’ = 3.8, = 3.4, = 1.17) chosen to get a
Hellinger distance of (approx.) 0.7 between starting prior and upper and lower ones
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EXTENSION TO MULTIVARIATE CASE

Prior distributions 7, (in blue), 7 (in orange) and =, (in green)

Histograms for prior distributions
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EXTENSION TO MULTIVARIATE CASE

in blue), 7 (in orange) and m,, (in green)

(

Prior distributions ,,,

Cdf’s for prior distributions
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EXTENSION TO MULTIVARIATE CASE

Prior distributions 7, (in blue), 7 (in orange) and =, (in green)

Histograms for posterior distributions
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EXTENSION TO MULTIVARIATE CASE

Prior distributions 7, (in blue), 7 (in orange) and m,,, (in green)

Cdf’s for posterior distributions
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EXTENSION TO MULTIVARIATE CASE

T True 95% Post. 95% Post. 95% Post.

value credibility mean credibility mean credibility mean

Int. TCw, ,t TCws,t Int Tt Tt Int TCw, .t TCws t
1992-1 83 [47.63, 78.53] 63 [66.25, 101.95] 84 [70.95, 107.79] 89
1992-2 72 42.81, 72.30] 57 63.20, 98.12] 80 [68.45 , 104.64] 86
1992-3 62 39.83, 68.37] 54 61.25, 95.66) 78 [66.84 , 102.62] 84
1993-1 72 35.90, 63.29 49 48.22, 79.32) 63 50.67 , 82.44] 66
1993-2 62 35.52, 58.77] 45 45.28, 75.51] 60 [47.82 , 78.78] 63
1993-3 42 30.15, 55.58] 42 43.16, 72.78] 57 45.76 , 76.13] 60
1994-1 62 31.59, 57.54] 44 42.01, 71.31] 56 43.53 , 73.29] 58
1994-2 42 29.12, 54.22] 41 39.77, 68.38] 54 41.35, 70.45] 55
1994-3 35 27.28, 51.68] 39 38.05, 66.12] 52 39.66 , 68.24 53
1995-1 42 30.84, 56.54] 43 40.92, 69.91] 55 42.10 , 71.45] 56
1995-2 35 28.92, 53.94] 41 39.21, 67.66] 53 40.42 , 69.26] 54
1995-3 23 27.40, 51.86] 39 37.82, 62.84 51 39.08 , 67.48] 53
1996-1 35 26.20, 50.21] 38 34.49, 61.42] 47 35.35 , 62.58] 48
1996-2 23 24.65, 48.05] 36 32.99, 59.43] 46 33.88 , 60.61] 47
1997-1 23 22.75, 45.40] 34 29.73, 55.04) 42 30.46 , 56.03] 43

Forecasts of the number of failures from 1993 to 1998
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