New Classes of Priors based on Stochastic Orders: Theory and Applications in Reliability

Fabrizio Ruggeri

Istituto di Matematica Applicata e Tecnologie Informatiche Consiglio Nazionale delle Ricerche *Via Bassini 15, I-20133, Milano, Italy, European Union fabrizio@mi.imati.cnr.it www.mi.imati.cnr.it/fabrizio/*

BAYESIAN ROBUSTNESS - BERGER, 1985

- $X \sim \mathcal{N}(\theta, 1)$
- Expert's opinion on prior P: median at 0, quartiles at ± 1 , symmetric and unimodal
- \Rightarrow Possible priors include Cauchy C(0, 1) and Gaussian $\mathcal{N}(0, 2.19)$
- Interest in posterior mean $\mu^{C}(x)$ or $\mu^{N}(x)$

\overline{x}	0	1	2	4.5	10
$\mu^{C}(x)$	0	0.52	1.27	4.09	9.80
$\mu^N(x)$	0	0.69	1.37	3.09	6.87

- Decision strongly dependent on the choice of the prior for large x
- \Rightarrow Choice of a class Γ of priors
- \Rightarrow Robustness measure: range of posterior quantity of interest

STOCHASTIC ORDERS

- Usual stochastic order
 - X and Y r.v.'s with d.f.'s F_X and F_Y s.t. $F_X(t) \ge F_Y(t)$, $\forall t \in \mathbb{R}$
 - $\Rightarrow X \leq_{st} Y$, i.e. X is said to be *smaller than* Y *in the usual stochastic order*
 - $X \leq_{st} Y \Leftrightarrow E[g(X)] \leq E[g(Y)]$ holds for all increasing functions g for which the expectations exist
- Likelihood ratio order
 - X and Y be (discrete) absolutely continuous r.v.'s with d.f.'s F_X and F_Y and (discrete) densities f_X and f_Y s.t. $\frac{f_Y(t)}{f_X(t)}$ increases over the union of the supports of X and Y (here a/0 is taken to be equal to ∞ whenever a > 0)

 $- \Rightarrow X \leq_{\mathsf{lr}} Y$, i.e. X is said to be *smaller than* Y *in the likelihood ratio order*

• $X \leq_{lr} Y \Rightarrow X \leq_{st} Y$

DISTORTION FUNCTIONS

- X r.v. with d.f. F_X
- *h* distortion function
 - non-decreasing continuous function $h : [0, 1] \rightarrow [0, 1]$
 - s.t. h(0) = 0 and h(1) = 1
- Given h, d.f. modified by $F_h(x) = h \circ F(x) = h [F(x)]$
- $\Rightarrow X_h$ distorted r.v. with d.f. $F_h(x)$
- Lemma.
 - π prior distribution (absolutely continuous or discrete) with d.f. F_{π}
 - *h* convex distortion function in $[0, 1] \Rightarrow \pi \leq_{lr} \pi_h$
 - *h* concave distortion function in $[0, 1] \Rightarrow \pi \geq_{lr} \pi_h$

CONCAVE AND CONVEX DISTORTION FUNCTIONS

- Solid: $F_{\pi}(\theta) = \theta$
- Dashed: $F_{\pi_{h_1}}(\theta) = \sqrt{\theta}$ (concave distortion) \Rightarrow decreasing l.r. $= \frac{1}{2\sqrt{\theta}} \Rightarrow \pi \ge_{lr} \pi_{h_1}$
- Dotted: $F_{\pi_{h_2}}(\theta) = \theta^2$ (convex distortion) \Rightarrow increasing l.r. $= 2\theta \Rightarrow \pi \leq_{lr} \pi_{h_2}$

DISTORTED BAND OF PRIORS

- Uncertainty on prior π through concave (h_1) and convex (h_2) distortion functions
- \Rightarrow distorted distributions π_{h_1} and π_{h_2} s.t. $\pi_{h_1} \leq_{lr} \pi \leq_{lr} \pi_{h_2}$
- **Definition.** Distorted band $\Gamma_{h_1,h_2,\pi}$ s.t. $\Gamma_{h_1,h_2,\pi} = \{\pi' : \pi_{h_1} \leq_{lr} \pi' \leq_{lr} \pi_{h_2}\}$
- $\pi \in \Gamma_{h_1,h_2,\pi} \Rightarrow$ distorted band as a particular "neighborhood" band of π , with lower and upper bounds given by distorted distributions
- $X \leq_{lr} Y \Rightarrow X \leq_{st} Y \Rightarrow$ distorted band subclass of distribution band class, i.e.

$$\begin{split} \mathsf{\Gamma}_{h_1,h_2,\pi} &\subseteq \left\{ \pi': \pi_{h_1} \leq_{st} \pi' \leq_{st} \pi_{h_2} \right\}, \\ &= \left\{ \pi': F_{\pi_{h_1}}(\theta) \geq F_{\pi'}(\theta) \geq F_{\pi_{h_2}}(\theta), \forall \theta \in \Theta \right\} \end{split}$$

- Note that likelihood ratio order does not apply, in general, when comparing two priors π'_1 and π'_2 in $\Gamma_{h_1,h_2,\pi}$, since each of them is just ordered w.r.t. π_{h_1} and π_{h_2}
- We are unable to "identify" all the priors in the class

CHOICES OF DISTORTION FUNCTIONS

- $h_1(x) = 1 (1 x)^{\alpha}$ and $h_2(x) = x^{\alpha}$, $\forall \alpha > 1$
 - Useful to represent uncertainty in the tails of the prior

-
$$\alpha = n \in \mathbb{N} \Rightarrow F_{\pi_{h_1}}(\theta) = 1 - (1 - F_{\pi}(\theta))^n$$
 and $F_{\pi_{h_2}}(\theta) = (F_{\pi}(\theta))^n$

- $\,\Rightarrow$ d.f.'s of min and max of i.i.d. random sample of size n from baseline prior π
- Skewed distributions
 - Absolutely continuous, symmetric around 0 prior with density $\pi(\theta)$ and d.f. $F_{\pi}(\theta)$
 - \Rightarrow skew- π with parameter α with density $\pi_{\alpha}(\theta) = 2\pi(\theta)F_{\pi}(\alpha\theta)$
 - Distribution: right skewed if $\alpha > 0$ and left skewed if $\alpha < 0$
 - Easy to show $\pi \leq_{lr} \pi_{\alpha}$ for all $\alpha > 0$ and $\pi_{\alpha} \leq_{lr} \pi$ for all $\alpha < 0$

CHOICES OF DISTORTION FUNCTIONS

- $\pi \sim N(0, 1)$ prior with standard normal d.f. Φ_Z
- Distorted d.f.'s $F_{\pi_{h_1}}(\theta) = 1 (1 \Phi_Z(\theta))^{1.3}$ and $F_{\pi_{h_2}}(\theta) = (\Phi_Z(\theta))^{1.3}$

POSTERIOR BAND

- Spizzichino (2001): given two priors π_1 and π_2 s.t. $\pi_1 \leq_{lr} \pi_2$ \Rightarrow posteriors s.t. $\pi_{1x} \leq_{lr} \pi_{2x}$
- **Proposition.** π prior and $\Gamma_{h_1,h_2,\pi}$ distorted band around π based on h_1 and h_2 $\Rightarrow \pi_{h_1,x} \leq_{lr} \pi'_x \leq_{lr} \pi_{h_2,x} \forall \pi' \in \Gamma_{h_1,h_2,\pi}$
- Posterior of lower and upper bound distributions of the distribution band \Rightarrow lower and upper bounds in the \leq_{lr} order sense for Γ_x , family of posterior distributions
- $\Rightarrow \Gamma_x$ still distortion band of a posterior for some concave and convex functions
- Closure property very uncommon among classes of priors
 ⇒ dealing with priors or posteriors is the same

METRICS TO MEASURE UNCERTAINTY

- Interest in probability metrics to evaluate how a prior belief differs from its distorted version and how the corresponding posterior distributions differ
- Mathematical tractability (but not only!) \Rightarrow Kolmogorov and Kantorovich metrics
- R.v.'s X and Y with d.f.'s F_X and F_Y
- Kolmogorov metric K(X, Y)

-
$$K(X,Y) = \sup_{x \in \mathbb{R}} |F_X(x) - F_Y(x)| = |p_0 - h(p_0)|$$
, with p_0 s.t. $h'(p_0) = 1$
- $h_1(x) = 1 - (1 - x)^{\alpha}$ and $h_2(x) = x^{\alpha}$, $\forall \alpha > 1$
- $\Rightarrow K(\pi, \pi_{h_1}) = K(\pi, \pi_{h_2}) = \frac{\alpha - 1}{\sqrt[\alpha - 1]{\alpha - 1}} = 0.067$ for $\alpha = 1.2$

FAULT TREE ANALYSIS Y x_1 x_2 x_3 x_3 x_3 x_1 x_2 x_3 $x_$

Two simple fault trees (a) using an OR operation and (b) using an AND operation

- Fault Tree Analysis (FTA) used to quantify the probability of occurrence of an undesirable event (Top Event, here Y)
- Fault trees (FTs) constructed in a top-down fashion from Top Event to their causes, represented by intermediate and elementary (here X_1, X_2, X_3) events in the tree
- Events usually Bernoulli trials \Rightarrow either happen or not
- Events usually statistically independent
- Relationship between events and causes represented using logical gates, most commonly AND and OR gates

FAULT TREE ANALYSIS

- FTA often used to evaluate risk in large, safety critical systems but has limitations due to its static structure
- Bayesian approaches proposed as a superior alternative to it, however, this involves prior elicitation, which is not straightforward
- Priors typically provided by Beta distributions on occurrence probability of elementary events
- Minor misspecification of priors for elementary events can result in a significant prior misspecification for the top event
- \Rightarrow need for a robustness approach for FTA which can quantify the effects of prior misspecification on the posterior analysis
- \Rightarrow first Bayesian robustness approach specifically developed for FTA

- $X_i \sim \text{Bernoulli}(\theta_i)$, with $\theta_i = P(X_i = 1)$, i = 1, 2, 3,
- $Y \sim \text{Bernoulli}(\theta)$, with $\theta = P(Y = 1)$
- $\Rightarrow \theta = 1 \prod_{i=1}^{3} (1 \theta_i)$ for [a] and $\theta = \prod_{i=1}^{3} \theta_i$ for [b]

•
$$\Rightarrow \pi(\theta = \tau) = \int_{\Omega_{\tau}^{0}} \pi_{1}(\tau_{1})\pi_{2}(\tau_{2})\pi_{3}(\tau_{3}) d\tau_{1}d\tau_{2}d\tau_{3}$$
 s.t.
 $\Omega_{\tau}^{0} = \{\tau_{i} \in [0, 1], i = 1, 2, 3 : 1 - \prod_{i=1}^{3} (1 - \tau_{i}) = \tau\}$ for the OR operation

•
$$\Rightarrow \pi(\theta = \tau) = \int_{\Omega_{\tau}^{A}} \pi_{1}(\tau_{1})\pi_{2}(\tau_{2})\pi_{3}(\tau_{3}) d\tau_{1}d\tau_{2}d\tau_{3}$$
 s.t.
 $\Omega_{\tau}^{A} = \{\tau_{i} \in [0, 1], i = 1, 2, 3 : \prod_{i=1}^{3} \tau_{i} = \tau\}$ for the AND operation

FAULT TREE ANALYSIS

 $\theta_1 \sim Beta(1, 10), \theta_2 \sim Beta(2, 10) \text{ and } \theta_3 \sim Beta(3, 20)$

- Left: Priors for θ_1 (continuous), θ_2 (dashed) and θ_3 (dot-dashed)
- **Centre:** Prior distribution for θ for the fault tree [a]
- **Right:** Prior distribution for θ for fault tree [b]

FAULT TREE ANALYSIS

- Distorted band class Γ_{α_1} with same α_1
 - Lower bound: $F_{h_1,\alpha_1}(x) = 1 [1 F(x)]^{\alpha_1}$
 - Upper bound: $F_{h_2,\alpha_1}(x) = [F(x)]^{\alpha_1}$
- $1 \leq \alpha_1 \leq \alpha_2 \Rightarrow \Gamma_{\alpha_1} \subset \Gamma_{\alpha_2}$
- $\Gamma_{\alpha} \to F(x)$ as $\alpha \downarrow 1$
- α_1 chosen so that Kolmogorov distance does not exceed a threshold
- Algorithm for generating upper (lower) density in band for Top Event: θ_i 's generated by upper (lower) density in elementary events
- Examples: spacecraft re-entry example and feeding control system

- Continuous line: starting prior for probability θ of Top Event Y
- Long-dashed line: distorted band using $\alpha = 2$
- Dotted line: distorted band using $\alpha = 1.8$
- Similar results for posterior distributions

- Prior $\pi(\theta), \theta \in \Theta \subseteq \mathbb{R}^n$
- Weight function $\omega : \mathbb{R}^n \mapsto \mathbb{R}^+$ s.t. $0 < E^{\pi} [\omega(\theta)] < \infty$

• Key idea:
$$\pi_{\omega}(\theta) = \frac{\omega(\theta)}{E^{\pi} [\omega(\theta)]} \pi(\theta), \quad \forall \theta \in \Theta \subseteq \mathbb{R}^n$$

- For n = 1, distorted density function as weighted function:
 f_{π_h}(θ) = h'(F_π(θ))π(θ) = w(θ)π(θ)
 for absolutely continuous prior (F_π(θ) and π(θ)) and differentiable distortion h
- $w(\theta) = h'(F_{\pi}(\theta)) \Rightarrow$ weight depends on F_{π}
- Absolutely continuous r.v.'s \Rightarrow weighted distributions more general than distorted ones
- Convex (concave) distortion $h \Leftrightarrow$ weight w increasing (decreasing)

- x and y real numbers $\Rightarrow x \lor y = \max\{x, y\}$ and $x \land y = \min\{x, y\}$
- \mathbf{x} and \mathbf{y} real vectors $\Rightarrow \mathbf{x} \lor \mathbf{y}$ and $\mathbf{x} \land \mathbf{y}$ max and min componentwise
- $\mathbf{U} \subseteq \mathbb{R}^n$ upper (lower) set if $\mathbf{y} \in \mathbf{U}$ whenever $\mathbf{y} \ge (\le)\mathbf{x}$ and $\mathbf{x} \in \mathbf{U}$
- Increasing and decreasing used in a wide sense, i.e., $g : \mathbb{R}^n \mapsto \mathbb{R}$ increasing (decreasing) if $g(\mathbf{x}) \leq (\geq)g(\mathbf{y})$ for all $\mathbf{x} \leq \mathbf{y}$
- X and Y *n*-dimensional r.v.'s with cdf's F and G, respectively
- X smaller than Y in the usual multivariate stochastic order (X \leq_{st} Y) if $P{X \in U} \leq P{Y \in U}$, for all upper sets $U \subseteq \mathbb{R}^n$
- X less likely than Y to take on large values, i.e. values in any upper set U
- $X \leq_{st} Y \Rightarrow F(x) \geq G(x), \forall x \in \mathbb{R}^n$ (vice versa true only for n = 1)
- $X \leq_{st} Y \Leftrightarrow E[\phi(X)] \leq E[\phi(Y)]$ for all increasing ϕ on \mathbb{R}^n s.t. expectations exist

- X and Y two r.v.'s with pdf's f and g, respectively
- X smaller than Y in the multivariate likelihood ratio stochastic order $(X \leq_{lr} Y)$ if $f(x)g(y) \leq f(x \wedge y)g(x \vee y)$, for every x and y in \mathbb{R}^n
- $\bullet \ X \leq_{lr} Y \Rightarrow X \leq_{st} Y$
- $l : \mathbb{R}^n \mapsto \mathbb{R}^+$, $n \ge 2$, multivariate totally positive of order 2 (*MTP*₂) if $l(\mathbf{x})l(\mathbf{y}) \le l(\mathbf{x} \land \mathbf{y})l(\mathbf{x} \lor \mathbf{y}), \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- *n*-dimensional r.v. X with pdf f said MTP_2 if f is MTP_2 or, equivalently, $X \leq_{lr} X$
- Product of *MTP*₂ functions is still *MTP*₂
- $l(\mathbf{x}) = \prod_{i=1}^{n} g_i(x_i)$, with univariate non-negative $g_i, i = 1, ..., n, \Rightarrow l(\mathbf{x})MTP_2$
- $g_i(x_i)$'s densities $\Rightarrow MTP_2 l(\mathbf{x})$, joint density for independent r.v.'s
- $\mathbf{X} \leq_{lr} \mathbf{Y} \Rightarrow$ order preserved for all marginal distributions

- X and Y r.v.'s with pdf's f and g, respectively
 - If either X or Y is MTP_2 then $X \leq_{lr} Y \Leftrightarrow$
 - $g(\mathbf{x})f(\mathbf{y}) \leq g(\mathbf{y})f(\mathbf{x}), \forall \mathbf{x} \leq \mathbf{y}, \text{ or, equivalently,}$
 - $g(\mathbf{x})/f(\mathbf{x})$ is increasing in the union of their supports
- $X \leq_{lr} Y \Rightarrow g(x)/f(x)$ increasing in x (vice versa true only for n = 1)
- Equivalence between log-supermodular and *MTP*₂ functions

- $f : \mathbb{R}^n \mapsto \mathbb{R}$ supermodular if $f(\mathbf{x} \land \mathbf{y}) + f(\mathbf{x} \lor \mathbf{y}) \ge f(\mathbf{x}) + f(\mathbf{y})$

• A function $l : \mathbb{R}^n \mapsto \mathbb{R}^+$ with 2 continuous derivatives is MTP_2 if and only if

$$\frac{\partial^2}{\partial x_i \partial x_j} \ln(l(\mathbf{x})) \ge 0, \, \forall i \neq j.$$

- *MTP*₂ positive dependence property
 - If X is MTP_2 then $Cov(\phi(X), \psi(X)) \ge 0$ for ϕ and ψ simultaneously monotone increasing or decreasing

- Multivariate prior π with pdf $\pi(\theta)$, $\theta \in \Theta \subseteq \mathbb{R}^n$
- Weight function $w : \mathbb{R}^n \mapsto \mathbb{R}^+$

• Weighted prior
$$\pi_w(\theta) = \frac{\omega(\theta)}{E^{\pi}[\omega(\theta)]}\pi(\theta), \quad \forall \theta \in \Theta \subseteq \mathbb{R}^n$$

- Consider only increasing and decreasing weight functions for two reasons
 - generalization of convex and concave distortion functions in univariate case
 - MTP_2 prior π and increasing (decreasing) weight function $w \Rightarrow \pi \leq_{lr} (\geq_{lr}) \pi_w$ \Rightarrow weighted prior more (less) likely than prior to take on larger values
- Decision maker representing changes in prior π by weight functions: w₁ decreasing and w₂ increasing

 \Rightarrow two weighted priors, π_{w_1} and π_{w_2} , s.t. $\pi_{w_1} \leq_{lr} \pi \leq_{lr} \pi_{w_2}$

- π : *MTP*₂ prior
- w_1 and w_2 : decreasing and increasing weight functions, respectively
- $\Rightarrow \Gamma_{w_1,w_2,\pi} = \{\pi' : \pi_{w_1} \leq_{lr} \pi' \leq_{lr} \pi_{w_2}\}$: weighted band

•
$$\pi \in \Gamma_{w_1,w_2,\pi} \Rightarrow \Gamma_{w_1,w_2,\pi}$$
 "neighborhood" of π s.t.

$$\begin{array}{rcl} \mathsf{\Gamma}_{w_1,w_2,\pi} & \subseteq & \left\{ \pi':\pi_{w_1}\leq_{st}\pi'\leq_{st}\pi_{w_2} \right\} \\ & \subseteq & \left\{ \pi':F_{\pi_{w_1}}(\boldsymbol{\theta})\geq F_{\pi'}(\boldsymbol{\theta})\geq F_{\pi_{w_2}}(\boldsymbol{\theta}), \forall \boldsymbol{\theta}\in\boldsymbol{\Theta} \right\} \end{array}$$

- Likelihood ratio order does not apply, in general, when comparing two priors π'_1 and π'_2 in $\Gamma_{w_1,w_2,\pi}$ but each of them is just ordered w.r.t. π_{w_1} and π_{w_2}
- Infinite number of priors in the class, e.g. all mixtures of two priors in the class (like π_{w_1}, π_{w_2} and π

- π : MTP_2 prior
- $\Gamma_{w_1,w_2,\pi}$: weighted band associated with π based on w_1 and w_2
- x: observed data \Rightarrow likelihood $l(\theta \mid \mathbf{x})$
- π'_x : posterior w.r.t. prior π'
- IF $l(\theta \mid \mathbf{x})$ is MTP_2 in θ
- $\Rightarrow \pi_{w_1,\mathbf{x}} \leq_{lr} \pi'_{\mathbf{x}} \leq_{lr} \pi_{w_2,\mathbf{x}}$ for all $\pi' \in \Gamma_{w_1,w_2,\pi}$

• Examples of weight functions

-
$$w(\theta) = \frac{1 - F_{\pi}(\theta)}{\pi(\theta)}$$

- $w(\theta) = \prod_{i=1}^{n} g_i(\theta_i)$ and $w(\theta) = \sum_{i=1}^{n} g_i(\theta_i)$

(g_i 's non-negative increasing (decreasing) functions $\Rightarrow w$ increasing (decreasing))

- $w(\theta) = \prod_{i=1}^{n} \theta_i^{a_i-1}$ and $w(\theta) = \sum_{i=1}^{n} \theta_i^{a_i-1}$ increasing (decreasing) when $a_i > 1$ ($a_i < 1$), for i = 1, ..., n
- Examples of *MTP*₂ likelihood
 - Sample from Pareto distribution
 - Sample from gamma distribution

- Failure data of door opening system of 40 underground trains
- Trains delivered to an European transportation company between 11/1989 and 3/1991 and put in service between 20/3/1990 to 20/7/1992
- Failure monitoring ended on 31/12/1998
- Odometer reading and failure date recorded upon failure, along with code of failed component (mechanical, electrical, etc.)
- Interest in
 - modelling failure history of electrical opening commands
 - predicting number of failures in future time intervals
 - checking reliability before warranty expiration

- N(t): failures in the electrical opening system in the interval (0, t]
- N(t): nonhomogeneous Poisson process (NHPP) with intensity function $\lambda(t)$ and increasing and invertible mean value function

$$m(t) = E[N(t)] = \int_0^t \lambda(x) dx,$$

such that $m(\infty) = \infty$

- Power law process (PLP), with parameter $\theta = (M, \beta) \in \mathbb{R}^+ \times \mathbb{R}^+$, with
 - intensity function $\lambda(t|\theta) = M\beta t^{\beta-1}$
 - mean value function $m(t|\theta) = Mt^{\beta}$
- $t^* = (T_1, \ldots, T_n)$ observed failure times in (0, T] s.t. $T_1 < \ldots < T_n$
- Likelihood function given by

$$l(\boldsymbol{\theta}|\mathbf{t}^*) = \prod_{i=1}^n \lambda(T_i) \cdot \exp(-m(T|\boldsymbol{\theta})) = \prod_{i=1}^n M\beta T_i^{\beta-1} \cdot \exp(-MT^\beta)$$

•
$$\frac{\partial^2 \ln(l(\theta \mid \mathbf{t}^*))}{\partial M \partial \beta} = -\ln(T)T^\beta \Rightarrow l(\theta \mid \mathbf{t}^*)MTP_2 \text{ in } \theta \Leftrightarrow T \leq 1$$

- \Rightarrow Normalised times, i.e. divided by total time T
- Independent exponential priors: $M \sim Exp(\lambda)$ and $\beta \sim Exp(\mu)$

• Independent gamma posteriors:

$$M|data \sim Gamma(n + 1, 1 + \lambda) \text{ and } \beta|data \sim Gamma(n + 1, \mu - \sum_{i=1}^{n} \ln(\frac{t_i}{T}))$$

• Weighted band given by

Lower:
$$\pi_{\omega_1}(\theta) \propto \lambda \mu M^{a-1} \beta^{b-1} \exp(-\lambda M) \exp(-\mu \beta) \exp[-cM\beta]$$

Upper: $\pi_{\omega_2}(\theta) \propto \lambda \mu M^{a'-1} \beta^{b'-1} \exp(-\lambda M) \exp(-\mu \beta) (M^{c'} + \beta^{c'})$

- $M \sim Exp(\lambda)$ and $\beta \sim Exp(\mu)$
 - Data from older trains (not used later) used to get numerically $M_0 = 495.5$ and $\beta_0 = 0.79$, comparing $m(t|\theta)$ and cumulative number of failures

-
$$\lambda = 1/M_0$$
 and $\mu = 1/\beta_0$

- Hellinger distance between two densities $f_{\mathbf{X}}$ and $f_{\mathbf{Y}}$: $H(\mathbf{X}, \mathbf{Y}) = \frac{1}{2} \int_{\Omega} (\sqrt{f_{\mathbf{X}}(\mathbf{x})} - \sqrt{f_{\mathbf{Y}}(\mathbf{x})})^2 d\mathbf{x} = 1 - \int_{\Omega} \sqrt{f_{\mathbf{X}}(\mathbf{x}) f_{\mathbf{Y}}(\mathbf{x})} d\mathbf{x}$
- (a = 0.8, b = 0.4, c = 0.17) and (a' = 3.8, b' = 3.4, c' = 1.17) chosen to get a Hellinger distance of (approx.) 0.7 between starting prior and upper and lower ones

Prior distributions π_{w_1} (in blue), π (in orange) and π_{w_2} (in green)

Histograms for prior distributions

Prior distributions π_{w_1} (in blue), π (in orange) and π_{w_2} (in green)

Cdf's for prior distributions

Prior distributions π_{w_1} (in blue), π (in orange) and π_{w_2} (in green)

Histograms for posterior distributions

Prior distributions π_{w_1} (in blue), π (in orange) and π_{w_2} (in green)

Cdf's for posterior distributions

Т	True	95%	Post.	95%	Post.	95%	Post.
	value	credibility	mean	credibility	mean	credibility	mean
		Int. $\pi_{w_1,\mathbf{t}}$	$\boldsymbol{\pi}_{w_1,\mathbf{t}}$	Int. $\pi_{ m t}$	${m \pi_{ m t}}$	Int. $\pi_{w_2,\mathbf{t}}$	$\boldsymbol{\pi}_{w_2,\mathbf{t}}$
1992-1	83	[47.63, 78.53]	63	[66.25, 101.95]	84	[70.95, 107.79]	89
1992-2	72	[42.81, 72.30]	57	[63.20, 98.12]	80	[68.45 , 104.64]	86
1992-3	62	[39.83, 68.37]	54	[61.25, 95.66]	78	[66.84 , 102.62]	84
1993-1	72	[35.90, 63.29]	49	[48.22, 79.32]	63	[50.67, 82.44]	66
1993-2	62	35.52, 58.77	45	45.28, 75.51	60	[47.82, 78.78]	63
1993-3	42	30.15, 55.58	42	[43.16, 72.78]	57	[45.76, 76.13]	60
1994-1	62	[31.59, 57.54]	44	[42.01, 71.31]	56	[43.53, 73.29]	58
1994-2	42	29.12, 54.22	41	[39.77, 68.38]	54	[41.35, 70.45]	55
1994-3	35	27.28, 51.68	39	38.05, 66.12	52	39.66 , 68.24	53
1995-1	42	[30.84, 56.54]	43	[40.92, 69.91]	55	[42.10, 71.45]	56
1995-2	35	28.92, 53.94	41	39.21, 67.66	53	40.42 , 69.26	54
1995-3	23	27.40, 51.86	39	37.82, 62.84	51	39.08 (67.48)	53
1996-1	35	[26.20, 50.21]	38	[34.49, 61.42]	47	[35.35, 62.58]	48
1996-2	23	[24.65, 48.05]	36	[32.99, 59.43]	46	33.88,60.61	47
1997-1	23	[22.75, 45.40]	34	[29.73, 55.04]	42	[30.46 , 56.03]	43

Forecasts of the number of failures from 1993 to 1998

REFERENCES

- Arias, P., Ruggeri, F. and Suarez-Llorens, A. (2016), New classes of priors based on stochastic orders and distortion functions. *Bayesian Analysis*, 11, 1107-1136.
- Joshi, C., Ruggeri, F. and Wilson, S.P. (2018), Prior Robustness for Bayesian implementation of the Fault Tree Analysis. *IEEE Transactions on Reliability*, 67, 170-183.
- Rios Insua, D. and Ruggeri, F. Eds. (2000), *Robust Bayesian Analysis*, *Lecture Notes in Statistics*, vol. 152, Springer, New York, USA.
- Ruggeri, F., Sanchez-Sanchez, M., Sordo, M.A. and Suarez-Llorens, A. (2021), On a new class of multivariate prior distributions: theory and application in reliability. *Bayesian Analysis*, 16, 31-60.