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BAYESIAN ROBUSTNESS - BERGER, 1985

• X ∼ N (θ,1)

• Expert’s opinion on prior P : median at 0, quartiles at ±1, symmetric and unimodal

• ⇒ Possible priors include Cauchy C(0,1) and Gaussian N (0,2.19)

• Interest in posterior mean µC(x) or µN(x)

x 0 1 2 4.5 10
µC(x) 0 0.52 1.27 4.09 9.80
µN(x) 0 0.69 1.37 3.09 6.87

• Decision strongly dependent on the choice of the prior for large x

• ⇒ Choice of a class Γ of priors

• ⇒ Robustness measure: range of posterior quantity of interest
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STOCHASTIC ORDERS

• Usual stochastic order

– X and Y r.v.’s with d.f.’s FX and FY s.t. FX(t) ≥ FY (t), ∀t ∈ R

– ⇒ X ≤st Y , i.e. X is said to be smaller than Y in the usual stochastic order

– X ≤st Y ⇔ E[g(X)] ≤ E[g(Y )] holds for all increasing functions g for which

the expectations exist

• Likelihood ratio order

– X and Y be (discrete) absolutely continuous r.v.’s with d.f.’s FX and FY and (dis-

crete) densities fX and fY s.t.
fY (t)

fX(t)
increases over the union of the supports

of X and Y (here a/0 is taken to be equal to∞ whenever a > 0)

– ⇒ X ≤lr Y , i.e. X is said to be smaller than Y in the likelihood ratio order

• X ≤lr Y ⇒ X ≤st Y
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DISTORTION FUNCTIONS

• X r.v. with d.f. FX

• h distortion function

– non-decreasing continuous function h : [0,1]→ [0,1]

– s.t. h(0) = 0 and h(1) = 1

• Given h, d.f. modified by Fh(x) = h ◦ F (x) = h [F (x)]

• ⇒ Xh distorted r.v. with d.f. Fh(x)

• Lemma.

– π prior distribution (absolutely continuous or discrete) with d.f. Fπ

– h convex distortion function in [0,1]⇒ π ≤lr πh
– h concave distortion function in [0,1]⇒ π ≥lr πh
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CONCAVE AND CONVEX DISTORTION FUNCTIONS
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• Solid: Fπ(θ) = θ

• Dashed: Fπh1
(θ) =

√
θ (concave distortion)⇒ decreasing l.r. =

1

2
√
θ
⇒ π ≥lr πh1

• Dotted: Fπh2
(θ) = θ2 (convex distortion)⇒ increasing l.r. = 2θ⇒ π ≤lr πh2
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DISTORTED BAND OF PRIORS

• Uncertainty on prior π through concave (h1) and convex (h2) distortion functions

• ⇒ distorted distributions πh1
and πh2

s.t. πh1
≤lr π ≤lr πh2

• Definition. Distorted band Γh1,h2,π s.t. Γh1,h2,π = {π′ : πh1
≤lr π′ ≤lr πh2

}

• π ∈ Γh1,h2,π ⇒ distorted band as a particular ”neighborhood” band of π, with lower
and upper bounds given by distorted distributions

• X ≤lr Y ⇒ X ≤st Y ⇒ distorted band subclass of distribution band class, i.e.

Γh1,h2,π ⊆
{
π′ : πh1

≤st π′ ≤st πh2

}
,

=
{
π′ : Fπh1

(θ) ≥ Fπ′(θ) ≥ Fπh2
(θ), ∀θ ∈ Θ

}
• Note that likelihood ratio order does not apply, in general, when comparing two priors
π′1 and π′2 in Γh1,h2,π, since each of them is just ordered w.r.t. πh1

and πh2

• We are unable to ”identify” all the priors in the class
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CHOICES OF DISTORTION FUNCTIONS

• h1(x) = 1− (1− x)α and h2(x) = xα, ∀α > 1

– Useful to represent uncertainty in the tails of the prior

– α = n ∈ N⇒ Fπh1
(θ) = 1− (1− Fπ(θ))n and Fπh2

(θ) = (Fπ(θ))n

– ⇒ d.f.’s of min and max of i.i.d. random sample of size n from baseline prior π

• Skewed distributions

– Absolutely continuous, symmetric around 0 prior with density π(θ) and d.f. Fπ(θ)

– ⇒ skew-π with parameter α with density πα(θ) = 2π(θ)Fπ(αθ)

– Distribution: right skewed if α > 0 and left skewed if α < 0

– Easy to show π ≤lr πα for all α > 0 and πα ≤lr π for all α < 0
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CHOICES OF DISTORTION FUNCTIONS
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• π ∼ N(0,1) prior with standard normal d.f. ΦZ

• Distorted d.f.’s Fπh1
(θ) = 1− (1−ΦZ(θ))1.3 and Fπh2

(θ) = (ΦZ(θ))1.3
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POSTERIOR BAND

• Spizzichino (2001): given two priors π1 and π2 s.t. π1 ≤lr π2

⇒ posteriors s.t. π1x ≤lr π2x

• Proposition. π prior and Γh1,h2,π distorted band around π based on h1 and h2

⇒ πh1,x ≤lr π′x ≤lr πh2,x ∀π′ ∈ Γh1,h2,π

• Posterior of lower and upper bound distributions of the distribution band ⇒ lower
and upper bounds in the ≤lr order sense for Γx, family of posterior distributions

• ⇒ Γx still distortion band of a posterior for some concave and convex functions

• Closure property very uncommon among classes of priors

⇒ dealing with priors or posteriors is the same
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METRICS TO MEASURE UNCERTAINTY

• Interest in probability metrics to evaluate how a prior belief differs from its distorted
version and how the corresponding posterior distributions differ

• Mathematical tractability (but not only!) ⇒ Kolmogorov and Kantorovich metrics

• R.v.’s X and Y with d.f.’s FX and FY

• Kolmogorov metric K(X,Y )

– K(X,Y ) = sup
x∈R
|FX(x)− FY (x)| = |p0 − h(p0)|, with p0 s.t. h′(p0) = 1

– h1(x) = 1− (1− x)α and h2(x) = xα, ∀α > 1

– ⇒ K(π, πh1
) = K(π, πh2

) =
α− 1
α−1
√
αα

= 0.067 for α = 1.2
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FAULT TREE ANALYSIS

Two simple fault trees (a) using an OR operation and (b) using an AND operation

• Fault Tree Analysis (FTA) used to quantify the probability of occurrence of an unde-
sirable event (Top Event, here Y )

• Fault trees (FTs) constructed in a top-down fashion from Top Event to their causes,
represented by intermediate and elementary (here X1, X2, X3) events in the tree

• Events usually Bernoulli trials⇒ either happen or not

• Events usually statistically independent

• Relationship between events and causes represented using logical gates, most com-
monly AND and OR gates
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FAULT TREE ANALYSIS

• FTA often used to evaluate risk in large, safety critical systems but has limitations
due to its static structure

• Bayesian approaches proposed as a superior alternative to it, however, this involves
prior elicitation, which is not straightforward

• Priors typically provided by Beta distributions on occurrence probability of elemen-
tary events

• Minor misspecification of priors for elementary events can result in a significant prior
misspecification for the top event

• ⇒ need for a robustness approach for FTA which can quantify the effects of prior
misspecification on the posterior analysis

• ⇒ first Bayesian robustness approach specifically developed for FTA
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FAULT TREE ANALYSIS

• Xi ∼ Bernoulli(θi), with θi = P (Xi = 1), i = 1,2,3,

• Y ∼ Bernoulli(θ), with θ = P (Y = 1)

• ⇒ θ = 1−
∏3
i=1(1− θi) for [a] and θ =

∏3
i=1 θi for [b]

• ⇒ π(θ = τ) =

∫
ΩO

τ

π1(τ1)π2(τ2)π3(τ3) dτ1dτ2dτ3 s.t.

ΩO
τ = {τi ∈ [0,1], i = 1,2,3 : 1−

∏3
i=1(1− τi) = τ} for the OR operation

• ⇒ π(θ = τ) =

∫
ΩA

τ

π1(τ1)π2(τ2)π3(τ3) dτ1dτ2dτ3 s.t.

ΩA
τ = {τi ∈ [0,1], i = 1,2,3 :

∏3
i=1 τi = τ} for the AND operation
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FAULT TREE ANALYSIS
θ1 ∼ Beta(1,10), θ2 ∼ Beta(2,10) and θ3 ∼ Beta(3,20)

• Left: Priors for θ1 (continuous), θ2 (dashed) and θ3 (dot-dashed)

• Centre: Prior distribution for θ for the fault tree [a]

• Right: Prior distribution for θ for fault tree [b]
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FAULT TREE ANALYSIS

• Distorted band class Γα1 with same α1

– Lower bound: Fh1,α1
(x) = 1− [1− F (x)]α1

– Upper bound: Fh2,α1
(x) = [F (x)]α1

• 1 ≤ α1 ≤ α2 ⇒ Γα1 ⊂ Γα2

• Γα → F (x) as α ↓ 1

• α1 chosen so that Kolmogorov distance does not exceed a threshold

• Algorithm for generating upper (lower) density in band for Top Event: θi’s generated
by upper (lower) density in elementary events

• Examples: spacecraft re-entry example and feeding control system
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FAULT TREE ANALYSIS176 IEEE TRANSACTIONS ON RELIABILITY, VOL. 67, NO. 1, MARCH 2018

Fig. 4. Prior for the probability θ of the TE Y (continuous), the distorted
bands using α = 2 in long-dashed lines for the FT [a] (top most) and FT [b]
(second from the top). Distorted bands obtained using α = 1.8 are shown in
dotted lines. Corresponding distribution functions are shown for the FT [a] (third
from the top) and FT [b] (bottom most).

the risks during a spacecraft re-entry was recently developed
in [5]. Their approach uses an FT to model the probability
of an explosive breakup of the spacecraft during the re-entry
process. The elementary events in this case are the (assumed
independent) causes that can eventually lead to the explosive
breakup. Eliciting priors required interviewing several experts
because the causes are varied and no one individual was an
expert on all of them. Since access to the experts was time
limited, typically, information was sought from an expert to
elicit prior for one of the elementary events he/she was an expert
on. The expert was then asked to make a pairwise comparison
between the events under their expertise in terms of which of
the events are more likely. The AHP [19] was used to derive
weights to the remaining events to elicit a prior distribution
for these events. These priors were then used to determine the
prior distribution of the TE (explosive breakup) and eventually
to find the posterior distribution of the TE given observation of
elementary or intermediate events.

For applications such as the spacecraft re-entry example, we
want to highlight the following important points.

1) The prior elicitation is prone to multiple errors.
2) Erroneous prior ⇒ erroneous posterior analysis.
We elaborate on these points in the following.
Eliciting prior probabilities on elementary events is sub-

ject to errors from multiple sources. First, the elicitation is
subject to higher uncertainty in the absence of enough prior

Fig. 5. Prior distribution for θTE (continuous) contrasted against its posterior
(long dashed) distribution. Left: n = 3 and one breakup is observed. Right:
n = 10 and one breakup is observed. Note that for n = 3, the prior and the
posterior are almost identical.

data/knowledge. Second, it is subject to the errors made in elic-
iting a prior distribution based on the information provided. This
could either be because the expert was not able to provide in-
formation on the minimum number of parameters necessary to
elicit a unique distribution or because the information provided
was not accurate. For example, this could be either because the
expert was only able to elicit a mean value, which does not
lead a to unique Beta prior or because the values cited by the
expert were not accurate. Then, it is also subject to the errors
introduced by the methods used to elicit a prior distribution. For
example, the errors introduced by the AHP used in the space-
craft example and also by the accuracy of the computer code
used to match the Beta distributions to the parameters elicited
by the expert. Finally, it is influenced by the subjectivity/bias of
the experts. This is especially true in situations where only one
expert is consulted for eliciting a particular prior—which was
the case for the spacecraft re-entry example. Seeking opinion
from multiple independent and impartial experts can reduce this
error—but this may not be possible in many cases due to the
time and resource constraints.

In Bayesian analysis, it is well known that, if only a small
amount of data is available, then the posterior distribution is
likely to be dominated by the prior distribution. For a complex
and highly expensive system, such as a spacecraft used for
re-entry, the data available are sparse at best and no more than a
very few observations are available. This means that, in practice,
the posterior will be nearly identical to the prior distribution.
This is illustrated in Fig. 5. The prior distribution indicates the
prior uncertainty around a spacecraft break-up event. In this
case, the prior distribution has a mode just below 0.3. It takes
the data on ten identical re-entries with one break-up event
(indicating the true probability of breakup to be around 0.1) for
the posterior to be noticeably different to the prior distribution.
Even then, the posterior is only slightly different than the prior.
Note that for a spacecraft re-entry application, one is most likely
to have only one or two observations on identical systems, not
ten. For this reason, the prior and the posterior distributions
will be nearly identical, as can be seen in Fig. 8. In other words,
any errors made while eliciting the prior information will be
directly transferred to the posterior distribution.

• Continuous line: starting prior for probability θ of Top Event Y

• Long-dashed line: distorted band using α = 2

• Dotted line: distorted band using α = 1.8

• Similar results for posterior distributions
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EXTENSION TO MULTIVARIATE CASE

• Prior π(θ), θ ∈ Θ ⊆ Rn

• Weight function ω : Rn 7→ R+ s.t. 0 < Eπ [ω(θ)] <∞

• Key idea: πω(θ) =
ω(θ)

Eπ [ω(θ)]
π(θ), ∀θ ∈ Θ ⊆ Rn

• For n = 1, distorted density function as weighted function:

fπh(θ) = h
′
(Fπ(θ))π(θ) = w(θ)π(θ)

for absolutely continuous prior (Fπ(θ) and π(θ)) and differentiable distortion h

• w(θ) = h
′
(Fπ(θ))⇒ weight depends on Fπ

• Absolutely continuous r.v.’s ⇒ weighted distributions more general than distorted
ones

• Convex (concave) distortion h⇔ weight w increasing (decreasing)
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EXTENSION TO MULTIVARIATE CASE

• x and y real numbers⇒ x ∨ y = max{x, y} and x ∧ y = min{x, y}

• x and y real vectors⇒ x ∨ y and x ∧ y max and min componentwise

• U ⊆ Rn upper (lower) set if y ∈ U whenever y ≥ (≤)x and x ∈ U

• Increasing and decreasing used in a wide sense, i.e.,
g : Rn 7→ R increasing (decreasing) if g(x) ≤ (≥)g(y) for all x ≤ y

• X and Y n-dimensional r.v.’s with cdf’s F and G, respectively

• X smaller than Y in the usual multivariate stochastic order (X ≤st Y) if

P{X ∈ U} ≤ P{Y ∈ U}, for all upper sets U ⊆ Rn

• X less likely than Y to take on large values, i.e. values in any upper set U

• X ≤st Y ⇒ F(x) ≥ G(x), ∀x ∈ Rn (vice versa true only for n = 1)

• X ≤st Y ⇔ E[φ(X)] ≤ E[φ(Y)] for all increasing φ on Rn s.t. expectations exist
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EXTENSION TO MULTIVARIATE CASE

• X and Y two r.v.’s with pdf’s f and g, respectively

• X smaller than Y in the multivariate likelihood ratio stochastic order (X ≤lr Y) if

f(x)g(y) ≤ f(x ∧ y)g(x ∨ y), for every x and y in Rn

• X ≤lr Y ⇒ X ≤st Y

• l : Rn 7→ R+, n ≥ 2, multivariate totally positive of order 2 (MTP2) if
l(x)l(y) ≤ l(x ∧ y)l(x ∨ y), ∀x,y ∈ Rn

• n-dimensional r.v. X with pdf f said MTP2 if f is MTP2 or, equivalently, X ≤lr X

• Product of MTP2 functions is still MTP2

• l(x) =
∏n
i=1 gi(xi), with univariate non-negative gi, i = 1, . . . , n,⇒ l(x)MTP2

• gi(xi)’s densities⇒MTP2 l(x), joint density for independent r.v.’s

• X ≤lr Y ⇒ order preserved for all marginal distributions
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EXTENSION TO MULTIVARIATE CASE
• X and Y r.v.’s with pdf’s f and g, respectively

– If either X or Y is MTP2 then X ≤lr Y ⇔

– g(x)f(y) ≤ g(y)f(x), ∀x ≤ y, or, equivalently,

– g(x)/f(x) is increasing in the union of their supports

• X ≤lr Y ⇒ g(x)/f(x) increasing in x (vice versa true only for n = 1)

• Equivalence between log-supermodular and MTP2 functions

– f : Rn 7→ R supermodular if f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y)

• A function l : Rn 7→ R+ with 2 continuous derivatives is MTP2 if and only if

∂2

∂xi∂xj
ln(l(x)) ≥ 0, ∀i 6= j.

• MTP2 positive dependence property

– If X is MTP2 then Cov(φ(X), ψ(X)) ≥ 0 for φ and ψ simultaneously mono-
tone increasing or decreasing
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EXTENSION TO MULTIVARIATE CASE

• Multivariate prior π with pdf π(θ), θ ∈ Θ ⊆ Rn

• Weight function w : Rn 7→ R+

• Weighted prior πw(θ) =
ω(θ)

Eπ [ω(θ)]
π(θ), ∀θ ∈ Θ ⊆ Rn

• Consider only increasing and decreasing weight functions for two reasons

– generalization of convex and concave distortion functions in univariate case

– MTP2 prior π and increasing (decreasing) weight function w ⇒ π ≤lr (≥lr)πw
⇒ weighted prior more (less) likely than prior to take on larger values

• Decision maker representing changes in prior π by weight functions: w1 decreasing
and w2 increasing

⇒ two weighted priors, πw1 and πw2, s.t. πw1 ≤lr π ≤lr πw2
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EXTENSION TO MULTIVARIATE CASE

• π: MTP2 prior

• w1 and w2: decreasing and increasing weight functions, respectively

• ⇒ Γw1,w2,π =
{
π′ : πw1 ≤lr π′ ≤lr πw2

}
: weighted band

• π ∈ Γw1,w2,π ⇒ Γw1,w2,π “neighborhood” of π s.t.

Γw1,w2,π ⊆
{
π′ : πw1 ≤st π′ ≤st πw2

}
⊆

{
π′ : Fπw1

(θ) ≥ Fπ′(θ) ≥ Fπw2
(θ), ∀θ ∈ Θ

}
.

• Likelihood ratio order does not apply, in general, when comparing two priors π′1 and
π′2 in Γw1,w2,π but each of them is just ordered w.r.t. πw1 and πw2

• Infinite number of priors in the class, e.g. all mixtures of two priors in the class (like
πw1,πw2 and π
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EXTENSION TO MULTIVARIATE CASE

• π: MTP2 prior

• Γw1,w2,π: weighted band associated with π based on w1 and w2

• x: observed data⇒ likelihood l(θ | x)

• π′x: posterior w.r.t. prior π′

• IF l(θ | x) is MTP2 in θ

• ⇒ πw1,x ≤lr π′x ≤lr πw2,x for all π′ ∈ Γw1,w2,π
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EXTENSION TO MULTIVARIATE CASE

• Examples of weight functions

– w(θ) = 1−Fπ(θ)
π(θ)

– w(θ) =
∏n
i=1 gi(θi) and w(θ) =

∑n
i=1 gi(θi)

(gi’s non-negative increasing (decreasing) functions ⇒ w increasing (decreas-
ing))

– w(θ) =
∏n
i=1 θ

ai−1
i and w(θ) =

∑n
i=1 θ

ai−1
i increasing (decreasing) when

ai > 1 (ai < 1), for i = 1, . . . , n

• Examples of MTP2 likelihood

– Sample from Pareto distribution

– Sample from gamma distribution
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EXTENSION TO MULTIVARIATE CASE

• Failure data of door opening system of 40 underground trains

• Trains delivered to an European transportation company between 11/1989 and 3/1991
and put in service between 20/3/1990 to 20/7/1992

• Failure monitoring ended on 31/12/1998

• Odometer reading and failure date recorded upon failure, along with code of failed
component (mechanical, electrical, etc.)

• Interest in

– modelling failure history of electrical opening commands

– predicting number of failures in future time intervals

– checking reliability before warranty expiration
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EXTENSION TO MULTIVARIATE CASE
• N(t): failures in the electrical opening system in the interval (0, t]

• N(t): nonhomogeneous Poisson process (NHPP) with intensity function λ(t) and
increasing and invertible mean value function

m(t) = E[N(t)] =

∫ t

0
λ(x)dx,

such that m(∞) =∞

• Power law process (PLP), with parameter θ = (M,β) ∈ R+ × R+, with

– intensity function λ(t|θ) = Mβtβ−1

– mean value function m(t|θ) = Mtβ

• t∗ = (T1, . . . , Tn) observed failure times in (0, T ] s.t. T1 < . . . < Tn

• Likelihood function given by

l(θ|t∗) =
n∏
i=1

λ(Ti) · exp(−m(T |θ)) =
n∏
i=1

MβT β−1
i · exp(−MT β)
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EXTENSION TO MULTIVARIATE CASE

•
∂2 ln(l(θ | t∗))

∂M∂β
= − ln(T )T β ⇒ l(θ | t∗)MTP2 in θ ⇔ T ≤ 1

• ⇒ Normalised times, i.e. divided by total time T

• Independent exponential priors: M ∼ Exp(λ) and β ∼ Exp(µ)

• Independent gamma posteriors:

M |data ∼ Gamma(n+ 1,1 + λ) and β|data ∼ Gamma(n+ 1, µ−
n∑
i=1

ln( ti
T

))

• Weighted band given by

Lower: πω1(θ) ∝ λµMa−1βb−1 exp(−λM) exp(−µβ) exp[−cMβ]

Upper: πω2(θ) ∝ λµMa′−1βb
′−1 exp(−λM) exp(−µβ)(M c′ + βc

′
)
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EXTENSION TO MULTIVARIATE CASE

• M ∼ Exp(λ) and β ∼ Exp(µ)

– Data from older trains (not used later) used to get numerically M0 = 495.5 and
β0 = 0.79, comparing m(t|θ) and cumulative number of failures

– λ = 1/M0 and µ = 1/β0

• Hellinger distance between two densities fX and fY:

H(X,Y) =
1

2

∫
Ω

(
√
fX(x)−

√
fY(x))2dx = 1−

∫
Ω

√
fX(x)fY(x)dx

• (a = 0.8, b = 0.4, c = 0.17) and (a′ = 3.8, b′ = 3.4, c′ = 1.17) chosen to get a
Hellinger distance of (approx.) 0.7 between starting prior and upper and lower ones
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EXTENSION TO MULTIVARIATE CASE
Prior distributions πw1 (in blue), π (in orange) and πw2 (in green)

Histograms for prior distributions
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EXTENSION TO MULTIVARIATE CASE
Prior distributions πw1 (in blue), π (in orange) and πw2 (in green)

Cdf’s for prior distributions
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EXTENSION TO MULTIVARIATE CASE
Prior distributions πw1 (in blue), π (in orange) and πw2 (in green)

Histograms for posterior distributions
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EXTENSION TO MULTIVARIATE CASE
Prior distributions πw1 (in blue), π (in orange) and πw2 (in green)

Cdf’s for posterior distributions

32



EXTENSION TO MULTIVARIATE CASE

T True 95% Post. 95% Post. 95% Post.
value credibility mean credibility mean credibility mean

Int. πw1,t πw1,t Int. πt πt Int. πw2,t πw2,t

1992-1 83 [47.63, 78.53] 63 [66.25, 101.95] 84 [70.95 , 107.79] 89
1992-2 72 [42.81, 72.30] 57 [63.20, 98.12] 80 [68.45 , 104.64] 86
1992-3 62 [39.83, 68.37] 54 [61.25, 95.66] 78 [66.84 , 102.62] 84
1993-1 72 [35.90, 63.29] 49 [48.22, 79.32] 63 [50.67 , 82.44] 66
1993-2 62 [35.52, 58.77] 45 [45.28, 75.51] 60 [47.82 , 78.78] 63
1993-3 42 [30.15, 55.58] 42 [43.16, 72.78] 57 [45.76 , 76.13] 60
1994-1 62 [31.59, 57.54] 44 [42.01, 71.31] 56 [43.53 , 73.29] 58
1994-2 42 [29.12, 54.22] 41 [39.77, 68.38] 54 [41.35 , 70.45] 55
1994-3 35 [27.28, 51.68] 39 [38.05, 66.12] 52 [39.66 , 68.24] 53
1995-1 42 [30.84, 56.54] 43 [40.92, 69.91] 55 [42.10 , 71.45] 56
1995-2 35 [28.92, 53.94] 41 [39.21, 67.66] 53 [40.42 , 69.26] 54
1995-3 23 [27.40, 51.86] 39 [37.82, 62.84] 51 [39.08 , 67.48] 53
1996-1 35 [26.20, 50.21] 38 [34.49, 61.42] 47 [35.35 , 62.58] 48
1996-2 23 [24.65, 48.05] 36 [32.99, 59.43] 46 [33.88 , 60.61] 47
1997-1 23 [22.75, 45.40] 34 [29.73, 55.04] 42 [30.46 , 56.03] 43

Forecasts of the number of failures from 1993 to 1998
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